THE GLOBAL DIETARY DATABASE: AN INTRODUCTION

Currently, harmonized, reliable data on individual-level dietary intake is extremely limited for many nations, and those that do exist have shortcomings.

To address this gap, we have created the Global Dietary Database (GDD), a repository of dietary data collected from primary surveys administered in 185 countries around the world. By collating, standardizing, and validating these data, we are able to estimate dietary intake of major foods and nutrients in children and adults worldwide. These estimates are the most up-to-date and reliable in the world, and will act as robust foundations for global nutrition interventions and policy, particularly which target vulnerable populations.

The GDD has contributed to novel evaluations of global diet quality and trends, nutrition-related disease burdens, existing diet estimation tools, and potential impacts of global sustainability pressures on dietary intakes and health.

Work on the GDD has spanned the past decade. The most recent iteration, termed “GDD 2010,” evaluated the intake of 21 foods and beverages around the world, accounting for differences in individuals’ age and sex.

The current iteration of the project, termed “GDD 2015,” has expanded greatly upon its predecessor. GDD 2015 estimates intake of 57 dietary factors globally, accounting not just for age and sex, but also for education level, urban or rural residency, and pregnancy status.

GDD 2015 aims to assess global dietary intake throughout the lifecourse (with particular focus on children, adolescents, and pregnant/nursing mothers), understand how both under- and overnutrition affect health worldwide, and evaluate the effectiveness of global nutrition interventions.

This report provides an update of GDD 2015, broken down by its specific output targets. Updates include methodology, completed work, next steps, and impact around the world since the completion of GDD 2010.

By issuing this report, we hope to spark collaborations with other key stakeholders in the global nutrition community. It is our ambition that, both through explicit partnerships and otherwise, GDD will raise the standard of future global nutrition research and initiatives.
A I M 1

EXTEND AND EXPAND OUR INNOVATIVE WORK TO BUILD AND DEVELOP THE GLOBAL DIETARY DATABASE 2015.
DATABASE DEVELOPMENT & EXPANSION

AIM 1A

DATA PROCESSING Using systematic search terms and direct contact with data owners, we were able to identify and retrieve hundreds of surveys containing nationally- or sub-nationally-representative dietary data collected between 1980 and 2016. These data were then prepared, standardized, and aggregated by GDD team members via a multi-stage process.

Data are typically received at the individual level in formats that vary widely on a case-by-case basis. GDD team members then extract relevant data and apply GDD coding to standardize their structure. Demographic characteristics identified in the dataset are then used to compile mean dietary intakes of groups (by age, sex, residence, education level, and pregnancy status). These group values are then compared against plausibility guidelines as a final filter before officially becoming model inputs. It’s through this process that GDD is able to incorporate data from around the world, irrespective of their original formatting or collection methods.

DATA SOURCES A breakdown of the surveys currently included in GDD 2015 is shown to the left. An additional 26 survey-years have been collected but excluded, and 18 more are being replaced by surveys with updated data.

ABOVE Assessment method of 1,437 survey-years collected for GDD 2015.

RIGHT Procedure for the assessment and analysis of survey data.

DATA PREPARATION WORKFLOW

DATA COLLECTION

- Dietary intake data is contributed by a data owner or downloaded from a public resource by a GDD team member.

PRELIMINARY CHECKS

- Survey metadata is verified and recorded. Foods or food groupings are matched to GDD dietary factors. Quality checks are completed.

CODING AND STANDARDIZATION

- Coding and standardization of demographic and dietary variables is performed to match GDD definitions and units.

AGGREGATION

- Survey microdata is aggregated into GDD demographic strata; mean and standard deviation for each stratum is calculated.

PLAUSIBILITY CHECKS

- Stratum means are subject to high and low plausibility guidelines to ensure biological feasibility of values. Data is finalized for model input.

KEY TEAM MEMBERS

- Gitanjali Singh: Investigator
- Jennifer Onopa: Researcher
- Peilin Shi: Biostatistician
- Jianyi Zhang: Biostatistician
- Julia Reedy: Research Coordinator
- Jordan Balletto: Research Scholar
Currently, GDD contains data on the intake of 57 dietary factors, including 14 foods, 7 beverages, 15 macronutrients, 19 micronutrients, and 2 indices of carbohydrate quality. In an effort to more closely capture total diet, future data collection will include an additional 4 factors: unprocessed poultry, sweet bakery products, sugar confectionery, and dairy desserts. However, as GDD 2015 is based in the United States, our definitions have largely been formulated with traditional Western foods in mind. Therefore, to accurately capture total global diet, we will be requesting input from global stakeholders on each of our new definitions to validate their cultural and regional relevance. These additions will maximize both the comprehensiveness of the definitions and the accuracy of future data collection.

A key difference between GDD 2015 and its previous iteration, GDD 2010, is the incorporation of dietary data from babies, children, and adolescents less than 20 years of age. Therefore, team members are evaluating all surveys currently in the GDD for the presence of child data and extracting these data when available. Assessment methods of the identified surveys are outlined to the left.

Given the prevalence of child wasting and stunting in low- and middle-income countries and the growing rise of child obesity globally, children's dietary patterns are of major concern. This work will give the GDD a more comprehensive representation of children's dietary patterns. More information on child diet quality and health outcomes can be found on pages 20 and 21.

NEW DIETARY VARIABLES

<table>
<thead>
<tr>
<th>Key Team Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renata Micha</td>
</tr>
<tr>
<td>Jennifer Onopa</td>
</tr>
<tr>
<td>Meghan O’Hearn</td>
</tr>
<tr>
<td>Jianyi Zhang</td>
</tr>
<tr>
<td>Julia Reedy</td>
</tr>
</tbody>
</table>

CHILD DATA

Assessment methods of GDD surveys with available child data.
In June, 2018, GDD team members attended The American Society for Nutrition’s “Nutrition 2018,” hosted in Boston, MA. Investigator Gitanjali Singh presented key data characteristic findings at the conference with a poster titled, “The 2015 Global Dietary Database: Key Characteristics of 1,395 Survey-Years of Individual-level Dietary Intake Data.” The figure below details the availability of survey-level dietary data around the world, in which countries depicted in dark blue, such as India, have the most available dietary survey data. On the other hand, light yellow and orange countries, like Saudi Arabia and Somalia, are the most data-sparse. By identifying data-sparse countries, we are able to prioritize future data collection from them.

The poster also included summary statistics of the 1,395 survey-years of data currently incorporated into GDD. Key highlights are listed on the following page.
97% of the global population, representing 185 countries, was covered by input data.

64% of data were publicly available; 36% were contributed by private data owners.

82% of survey-years were nationally representative. 18% were sub-nationally representative.

88% of surveys covered both urban and rural areas. 9% covered urban areas only, and 3% covered only rural areas.

53% of diet surveys were food-frequency questionnaires. 22% were based on dietary recalls, and 14% were DHS questionnaires.

92% of surveys were contributed as individual-level data; 8% were household-level.
INCORPORATING COVARIATES & NEW MODELING METHODS

COVARIATES - To achieve greater validity and precision of our final model estimates, especially for data-sparse countries, GDD team members have conducted searches to identify both private and publicly-available data on potential model covariates. These covariates, which include economic, agricultural, and environmental data, can partially help explain variation in dietary intake around the world.

In this search, over 100 new publicly-available covariates have been identified. Furthermore, we have developed a strategic partnership with the Global Expanded Nutrient Supply (GENuS) group from Harvard University to utilize country-level data on availability for 225 foods and nutrients as model covariates.

By identifying and adjusting for these influential factors, GDD is able to more closely estimate global dietary intake.

MODELING - We are currently testing and incorporating the covariates into our models. We perform checks by creating heat maps to visualize the model outputs and identify data issues. An example of a heat map is shown below.

BELOW
Model estimate heat map for intake of a single dietary variable.

KEY TEAM MEMBERS

Dariush Mozaffarian
Principal Investigator

Victoria Miller
Post-doctoral Scholar

Fred Cudhea
Biostatistician

Peilin Shi
Biostatistician

Jennifer’s work outlined the sources, collection methods, and inclusion and exclusion criteria for all survey-years of data identified for GDD input. After identifying 4,759 records of dietary data, 1,395 total years of survey data were accessible and met GDD inclusion criteria.

Key findings show that fruits, non-starchy vegetables, sugar-sweetened beverages, total milk, unprocessed red meats, and beans/legumes were the most widely reported foods and beverages in these final 1,395 survey-years. The figure below outlines the availability of data of 21 foods and beverages.

Total energy, seafood omega-3s, fiber, sodium, and calcium were the most widely reported nutrients. A corresponding figure for data availability of 36 nutrients can be found on the following page.
DATA AVAILABILITY

Below
Survey-level availability of nutrient intake data.

MACRONUTRIENTS/CHO INDEX

- Total energy: 83.8%
- Seafood omega-3 fat: 71.7%
- Dietary fiber: 79.3%
- Saturated fat: 75.3%
- Dietary cholesterol: 73.7%
- Total omega-6 fatty acids: 71.2%
- Total protein: 55.8%
- Total carbohydrates: 52.8%
- Trans fatty acid*: 20.4%
- Plant omega-3 fat: 63.2%
- Monounsaturated fat: 47.7%
- Added sugars: 17.3%
- Animal protein: 25.9%
- Plant protein: 22.7%
- Dairy protein: 20.6%
- Glycemic load: 5.4%
- Glycemic index: 5.4%

MICRONUTRIENTS

- Sodium*: 76.7%
- Calcium: 79.5%
- Iron: 55.4%
- Vitamin C: 50.2%
- Vitamin B2: 50.7%
- Vitamin B1: 49.7%
- Vitamin A w/o supplements: 50.7%
- Vitamin B3: 50.1%
- Potassium: 49.4%
- Zinc: 50.2%
- Vitamin B9: 47.9%
- Magnesium: 48.5%
- Vitamin E: 44.4%
- Vitamin B6: 45.4%
- Vitamin B12: 39.1%
- Vitamin D: 24.6%
- Selenium: 35.9%
- Iodine: 24.1%
- Vitamin A w/ supplements: 25.5%

*Counts include dietary biomarker data in addition to dietary intake data.
A major challenge in assessing dietary intake is the variation of descriptions of individual, self-reported food items, which can ultimately lead to assessment errors. To address this issue, we will apply FoodEx2 – a sophisticated food description and classification system developed by the European Food Safety Authority (EFSA) – to dietary surveys within GDD. This work will help to standardize global dietary intake beyond the 57 dietary variables currently collected by GDD.

This year, GDD team members have developed a protocol for communication and collaboration with EFSA and FAO/WHO GIFT, as well as relevant data owners, in our work on FoodEx2 coding. This protocol is outlined to the right.

The adaptation of the FoodEx2 system is a major advancement for the collection and storage of individual-level dietary intake data. By utilizing this system, the GDD recommits to its pledge to raise the standard of data collection around the world. It’s with critical tools like FoodEx2 that GDD is able to more precisely inform global nutrition interventions and policies.
REPORTING MAJOR FINDINGS

AIM 1E

DATA COLLECTION METHODS » For low- or middle-income populations, costly data collection methods like 24-hour recalls are an impractical use of resources. In populations like these, preferred tools are ones that can be deployed quicker and at a lower cost.

One such tool is a household consumption survey, in which a single respondent provides information on the entire household’s food consumption, rather than distinguishing intake by each individual household member. Researchers then use these responses to extrapolate intake of each household member using one of two calculations: the Per-Capita (PC) method, which assumes intake is symmetrical across the household, or the preferred Adult Male Equivalent (AME) method, which takes members’ age and sex into account.

In a recent study, Karageorgou et al. found that household consumption surveys overestimated consumption of almost all foods when compared to 24-hour recalls, regardless of calculation method. This overestimation was especially pronounced in children and low-socioeconomic households (both of which are vulnerable populations) as well as nutrient-dense foods like fruits, vegetables, and animal-source products. These differences in turn drove overestimates of key micronutrients like vitamin A, folate, and calcium -- all of which are commonly the focus of nutrition interventions in vulnerable populations.

These findings highlight the need for more precise ways to estimate individual dietary intake from household consumption surveys, especially for children. By prioritizing accurate dietary assessment, particularly in low- and middle-income residences, the global nutrition community can save valuable resources and formulate more reliable burden analyses, interventions, and policies.

AIM 2

BROADLY DISSEMINATE THE GDD 2015 VIA A NEW ONLINE PLATFORM, NEW SOCIAL MEDIA AND SCIENTIFIC MEETING STRATEGIES, DEEPER RESEARCH COLLABORATIONS, AND STRATEGIC PARTNERSHIPS.
DATA SHARING AGREEMENTS

AIM 2A

Survey Data Sharing

Currently, GDD output data is available for request by researchers and other stakeholders in the global nutrition community (page 17). However, no such capability exists for the request or download of GDD input data. Such a functionality would be helpful in connecting researchers both with one another and with important data on the populations they study. Of course, it must be acknowledged that data which do not primarily belong to GDD must be handled with special care and attention. Therefore, we are pursuing data sharing agreements (DSAs) with survey owners to ensure the safe and responsible sharing of data.

At present, almost half of all GDD surveys have a corresponding signed DSA in place. For these surveys, and all others that have a signed agreement in the future, data will be made available for download on the new GDD website (more information on the GDD website can be found on page 15).

Data from Aggregated Surveys

Only 70% of GDD input surveys were contributed at the most granular level possible. The remaining 30% were contributed after their owners aggregated data into groups. Therefore, GDD team members will be contacting the owners of these surveys to retrieve additional data.

Key Team Members

- **Renata Micha**
 - Investigator

- **Orsolya Szabo**
 - Project Administrator

Right

Survey count accepted for public dissemination, by type.

Above

Status of DSAs sent to 233 GDD data owners.
The true value of GDD lies in its use as a resource for all members of the global nutrition community. While sound data collection and statistical methods are crucial, they would be in vain if outputs were not made available in a way that was useful for policymakers, stakeholders, and researchers.

Therefore, multiple meetings have been held to gather input from potential users to ensure the project’s success. Feedback from these meetings was largely concerned with data visualizations and their ability to accurately display data in a way that their viewers will understand and find useful.

Using this insight and user experience design theory, a platform is being developed to ensure that data is thoughtfully visualized and easily accessible for secondary analysis by external users.

The development of our interactive data platform is just one piece of a larger overhaul of the public-facing GDD website. With the help of Friedman Web Communications, we are updating the website to enhance navigation, functionality, accessibility, and aesthetic.

Below
Sample data visualizations presented to focus groups.

A timeline for dissemination platform development.

AM I 2 B
GDD Dissemination Platform
A Timeline of Development

SPRING, 2018
PRELIMINARY DESIGNS
Based on input from GDD Investigators, sample data visualizations and data dissemination platform wireframe plans were designed.

APRIL, 2018
FOCUS GROUPS
Experts in the areas of global nutrition, child & maternal health, sustainability, agriculture, and economics were invited to participate in focus groups to provide feedback on the preliminary designs.

AUGUST, 2018
DESIGN FINALIZED
Utilizing feedback from focus groups and investigators, final designs for both the wireframe and data visualizations were established.

SPRING, 2019
BETA LAUNCH
GDD team members and developers will build the beta-version of the GDD online data dissemination platform, user interface, and data visualizations.

PUBLISHED OCTOBER, 2018 - GLOBAL DIETARY DATABASE

KEY TEAM MEMBERS

Gitanjali Singh
Investigator

Jennifer Onopa
Researcher

Jianyi Zhang
Biostatistician

Below
Sample data visualizations presented to focus groups.

Graph A: Change in Diet Across time for the World

Graph B: Consumption across age groups

Graph C: Heat map by dietary factor

Graph D: Contribution to total intake in grams*

*Raw, Fruits, Vegetables, Oils, and Meat

Tufts University School of Nutrition Science and Policy
WEB COMMUNICATIONS & SOCIAL MEDIA

SOCIAL MEDIA » Official GDD Twitter and LinkedIn accounts have been created to increase awareness of the project and easily disseminate key messages to large audiences. Doing so has also established a direct line of communication between the project and GDD data owners, strategic partners, and other collaborators.

Key social media success statistics are outlined to the right. Out of 231 data owners, 101 have connected with GDD on one or both platforms. Those who connected via LinkedIn were subsequently invited to a private group, which acts as a forum for GDD project updates, collaboration between members, and as a focus group for feedback on the project.

NEWSLETTER » The Official GDD Newsletter is a mode of communication used to highlight the project’s recent successes, upcoming directions or challenges, collaborators, and other notable happenings. Volume 01 was released August 1, 2018; each subsequent volume will follow a quarterly release schedule.

Each iteration of the newsletter contains six sections, two of which will maintain a standard format: “Meet the Corresponding Member,” and “Meet the Strategic Partner.” These sections are used to show appreciation to the data owners and organizations whose work is essential to GDD, and to give them an opportunity to speak about their work to a large audience.

KEY TEAM MEMBERS

Dariush Mozaffarian
Principal Investigator

Julia Reedy
Research Coordinator

LEFT

A portion of the first edition of the Official GDD Newsletter.
CURRENT DATA REQUESTS
GDD data is available for request by researchers, non-governmental and governmental organizations, and other various decision-makers in the global nutrition field. By sharing GDD data, we can increase the project’s impact on nutrition and health research and, ultimately, diet-related disease risk around the world.

In 2018, 16 requests for GDD data were received. The disciplines of these requesters are outlined to the right. Those who had received GDD data in 2017 or earlier were contacted in 2018 for updates on any relevant project. Currently, no external publications have resulted from the sharing of GDD data. However, five projects are currently in varying stages of analysis and authorship.

THE FUTURE OF DATA REQUESTS
A key output of GDD 2015 is the transition to open source data access. This change will make both the project’s modeled dietary estimates and its input data available to all people, rather than just to those who meet elite criteria (more information on the public dissemination of survey data can be found on page 14). It is, however, imperative that all GDD data are used appropriately. By implementing the system outlined below, we can automate the data request process while maintaining a standard of use and prioritizing high-impact requests. This process will be implemented on the newly-developed online data dissemination platform (more information on the online data dissemination platform can be found on page 15).

KEY TEAM MEMBERS

Dariush Mozaffarian
Principal Investigator

Renata Micha
Investigator

Gitanjali Singh
Investigator

Patrick Webb
Investigator

Peilin Shi
Biostatistician

Julia Reedy
Research Coordinator

EXTERNAL DATA REQUESTS

AIM 2D

STUDENT
23%

TRADE
15%

NGO
15%

ACADEMIC RESEARCH
47%

ABOVE
Disciplines of 2018 GDD data requesters as of October 31.

RIGHT
Proposed flow of automated data request process
STRATEGIC PARTNERSHIPS
AIM 2E

Strategic relationships with organizations and initiatives in global health and nutrition research are a critical piece in leveraging GDD 2015. Such partnerships have the potential to save valuable resources, address gaps in vital research and programs, and globally disseminate valuable data in an efficient manner.

Efforts have been made to contact and coordinate with such organizations to identify areas of task overlap and, therefore, inherent opportunities for collaboration. These partnerships can take on many forms, depending on the core aims, mission, and values of each participating initiative. Some potential components of these partnerships are outlined to the right.

A comprehensive list of 40+ potential strategic partners was compiled and prioritized for consideration. We have reached out to and organized initial meetings with FAO/WHO GIFT, EFSA, GALLUP, GBD-IHME, FAOSTAT, GODAN, GNR, INDDEX, IFPRI, ARENA, GAIN, HarvestPlus, and the World Bank. Final collaboration agreements have been established with FAO/WHO GIFT, EFSA, and Global Nutrition Report (GNR).

KEY TEAM MEMBERS

Dariush Mozaffarian
Principal Investigator

Renata Micha
Investigator

Orsolya Szabo
Project Administrator

Victoria Miller
Post-doctoral Scholar

Dimitra Karageorgou
Post-doctoral Scholar

A comprehensive list of 40+ potential strategic partners was compiled and prioritized for consideration. We have reached out to and organized initial meetings with FAO/WHO GIFT, EFSA, GALLUP, GBD-IHME, FAOSTAT, GODAN, GNR, INDDEX, IFPRI, ARENA, GAIN, HarvestPlus, and the World Bank. Final collaboration agreements have been established with FAO/WHO GIFT, EFSA, and Global Nutrition Report (GNR).
AIM 3

Perform new investigations and reviews on maternal and child diet diversity/quality, based on existing metrics as well as our prior work considering food consumption patterns, in relation to key health outcomes.
Even modest dietary changes in adults and children are associated with improvements in undernutrition, micronutrient deficiencies, and diet-related chronic diseases. To better define a healthy diet for all forms of malnutrition – the underconsumption of calories, nutrients, or healthy foods or the overconsumption of unhealthy foods - GDD team members have begun a comprehensive review of dietary components to assess their relationships with disease outcomes. The review has identified more than fifteen metrics used around the world to relate diet to health outcomes.

Relative Risks This type of analysis was completed by Micha et al., 2017, in which the evidence for effects of 16 foods and nutrients on 10 cardiometabolic diseases was reviewed and evaluated for causal diet-disease relationships. Results from this review are displayed in the matrix below.

Current work to update the relative risks for fruits, vegetables, legumes, unprocessed red meat and processed meat on cardiometabolic diseases is underway. Additionally, new searches will expand upon the matrix below by evaluating additional foods and diseases not previously considered.

The GDD website will include detailed descriptions of the methodology used to assess these relationships and progress on updated searches. The matrix below will also be displayed to communicate the causal relationships between food and disease in a way that is easily understood by viewers.

Relative Risks of 16 foods & nutrients on 10 disease outcomes.

<table>
<thead>
<tr>
<th>CVD</th>
<th>CHD</th>
<th>CHD (FATAL)</th>
<th>CHD (NON-FATAL)</th>
<th>STROKE</th>
<th>ISCHEMIC STROKE</th>
<th>HEMORRHAGIC STROKE</th>
<th>DIABETES</th>
<th>BODY MASS INDEX</th>
<th>SYSTOLIC BLOOD PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beans/Legumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts/Seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Grains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Meat, Unprocessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processed Meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yogurt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar-Sweetened Beverages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyunsaturated Fatty Acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seafood (Fish/Seafood)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trans Fats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietary Fiber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyemic Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Convincing Decreased Risk
- Probable Decreased Risk
- Convincing Increased Risk
- Probable Increased Risk
- Substantial Effect on Risk Unlikely

Key Team Members

- Patrick Webb, Investigator
- Renata Micha, Investigator
- Victoria Miller, Post-doctoral Scholar
CHILD GROWTH OUTCOMES
AIM 3B

GDD 2015 now includes dietary data on infants and children aged 6 months to 19 years of age. As preliminary work, we identified and compiled private and publicly-available datasets with child dietary data and health outcomes (more information on child data can be found on page 5). We will use the relative risks outlined on the previous page to evaluate the relationship between diet quality and child health outcomes. Additionally, for the foods and nutrients not previously explored by the GDD team, we will begin new searches and analyses of evidence.

METRICS OF ANIMAL SOURCE FOODS: International guidelines recommend introducing complementary foods to children as young as 6 months old to meet the increased dietary requirements that come with rapid growth. Animal source foods are believed to play a unique role in meeting these needs because they generally contain important vitamins and minerals. However, several types of animal source foods, including processed and unprocessed red meat, have been shown to increase the risk of cardiometabolic diseases in adulthood.

Presently, there is an urgent need to identify optimal levels of intake of animal source foods for both child growth outcomes in relation to undernutrition and as a risk factor for diet-related diseases. GDD team members are conducting a comprehensive review to describe the relationship between animal source foods and health outcomes in infants and young children. Findings from this review will inform the categorization of animal source foods and further investigations on their relationships with disease in adults.

ABOVE
Process for conducting relative risk analyses of foods.

RIGHT
Categorization of animal source foods.